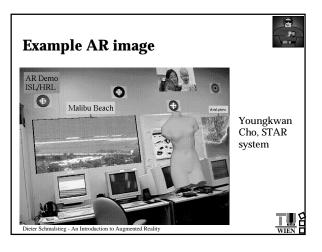


Syllabus

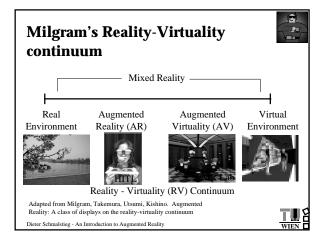
- Overview
- Tracking for Augmented Reality
- Augmented Reality Interaction
- Collaborative Augmented Reality
- Heterogeneous user interfaces
- Mobile Augmented Reality


Dieter Schmalstieg - An Introduction to Augmented Reality


Definition of Augmented Reality (1)

- Virtual Environments (VE): Completely replaces the real world
- Augmented Reality (AR): User sees real environment; combines virtual with real
- Supplements reality, instead of completely replacing it
- Photorealism not necessarily a goal

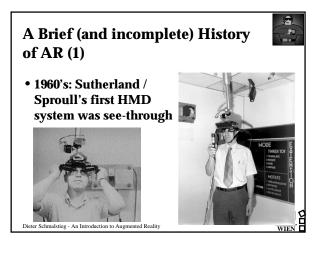
Dieter Schmalstieg - An Introduction to Augmented Reality



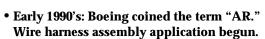
Definition of Augmented Reality (2)

- 1) Blends real and virtual, in real environment
- 2) Real-time interactive
- 3) Registered in 3-D
- Applies to all senses (auditory, haptic?)
- Not an HMD-specific definition
- Includes idea of removing part of real environment (a.k.a. mediated or diminished reality)

Why are researchers interested?



- Enhance perception of and interaction with the real world
- Potential for productivity improvements in real-world tasks
- Relatively new field with many problems, but much progress has occurred recently


Dieter Schmalstieg - An Introduction to Augmented Reality

3

A Brief (and incomplete) History of AR (2)

• Early to mid 1990's: UNC ultrasound visualization project

- 1994: Motion stabilized display [Azuma]
- 1994: Fiducial tracking in video see-through [Bajura / Neumann]

A Brief (and incomplete) History of AR (3)

- 1996: UNC hybrid magnetic-vision tracker (first compelling environment)
- 1998: Dedicated conferences begin
- Late 90's: Collaboration, outdoor, interaction
- Late 90's: Augmented sports broadcasts
- 1998 2001: Mixed Reality Systems Lab
- 2000: Custom see-through HMDs

Dieter Schmalstieg - An Introduction to Augmented Reality

WIEN

3

Growth of field: conferences

New conferences dedicated to this topic:

• International Symposium on Augmented Reality

http://www.Augmented-Reality.org/isar

- International Symposium on Mixed Reality http://www.mr-system.co.jp/ismr
- Designing Augmented Reality Environments

Dieter Schmalstieg - An Introduction to Augmented Reality

Growth of field: projects

- Mixed Reality Systems Laboratory (Japan) http://www.mr-system.co.jp/
- Project ARVIKA (Germany) http://www.arvika.de/

Dieter Schmalstieg - An Introduction to Augmented Reality

• Ubicom Project (Delft University) http://www.ubicom.tudelft.nl

Some starting points

• Jim Vallino's, Reinhold Behringer's pages: http://www.cs.rit.edu/~jrv/research/ar

http://www.augmented-reality.org

- Ron Azuma's survey paper
 - Azuma, Ronald. A Survey of Augmented Reality. *Presence: Teleoperators and Virtual Environments 6*, 4 (August 1997), 355-385.

Dieter Schmalstieg - An Introduction to Augmented Reality

More starting points

WIEN

. **1**

• Updated survey to appear in Nov. 2001 IEEE Computer Graphics & Applications

Azuma, Baillot, Behringer, Feiner, Julier, MacIntyre. Recent Advances in Augmented Reality.

• Book

Barfield and Caudell. Fundamentals of Wearable Computers and Augmented Reality. Lawrence Erlbaum Associates (2001). ISBN 0-8058-2901-6

WIEN

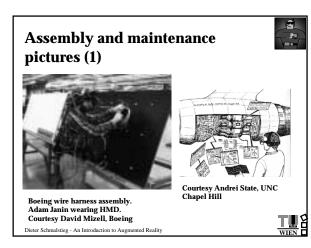
Applications: medical

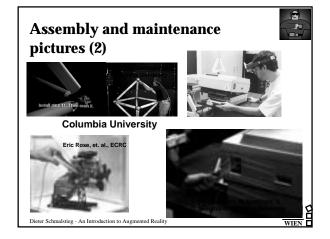
Dieter Schmalstieg - An Introduction to Augmented Reality

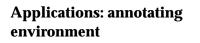
- "X-ray vision" for surgeons
- Aid visualization, minimally-invasive operations. Training. MRI, CT data.

• Ultrasound project, UNC Chapel Hill.

Applications: complex machinery



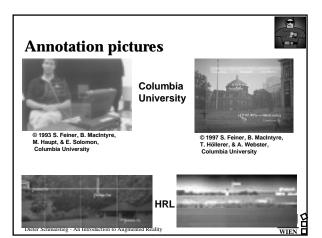

WIEN

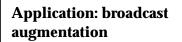

- Instructions for assembly, maintenance and repair of complex equipment
 - Aircraft [Boeing]
 - Printers [Columbia]
 - Engines
 - Automobile assembly

Dieter Schmalstieg - An Introduction to Augmented Reality

and others...

- Public and private annotations
- Aid recognition, "extended memory"


WIEN


3

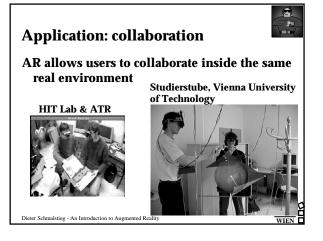
WIEN

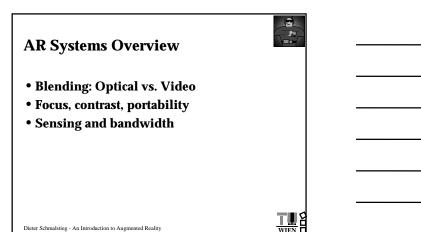
- Libraries, maps [Fitzmaurice93]
- Windows [Columbia]

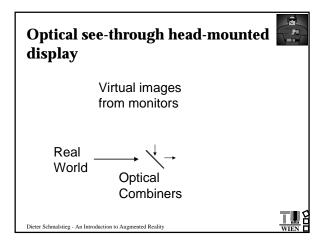

- Mechanical parts [many places]
- Reminder notes [Sony, MIT Media Lab]
- Navigation and spatial information access

- Adding virtual content to live sports broadcasts
 - "First down" line in American football
 - Hockey puck trails, virtual advertisements
 - National flags in swimming lanes in 2000 Olympics
- Commercial application
 - Princeton Video Image is one company

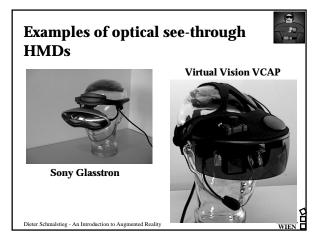
```
Dieter Schmalstieg - An Introduction to Augmented Reality
```

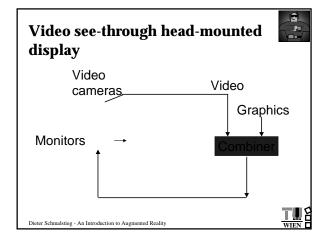


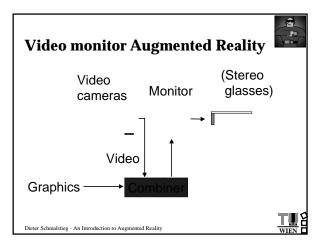

- Helmet-mounted sights (short-range missiles)
- Virtual runway markers

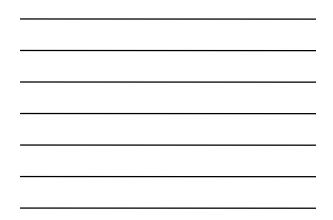

Dieter Schmalstieg - An Introduction to Augmented Reality

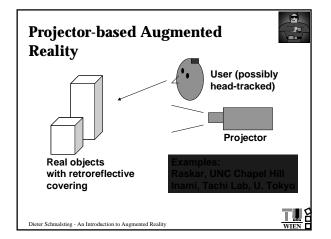

• Runway incursions are a leading cause of aircraft accidents.


- T-NASA head up display for runway incursions
- Enhanced view for low visibility situations

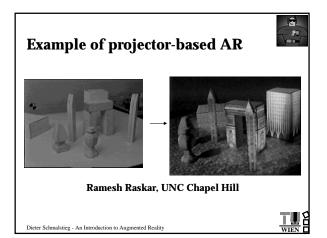


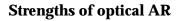

Example of video see-through HMD




G

WIEN


MR Laboratory's COASTAR HMD (Co-Optical Axis See-Through Augmented Reality) Parallax-free video see-through HMD Dieter Schmalstieg - An Introduction to Augmented Reality



- Simpler (cheaper)
- Direct view of real world
 - Full resolution, no time delay (for real world)
 - Safety
 - Lower distortion

Dieter Schmalstieg - An Introduction to Augmented Reality

• No eye displacement (but COASTAR video see-through avoids this problem)

5

Strengths of video AR

- True occlusion (but note Kiyokawa optical display that supports occlusion)
- Digitized image of real world
 - Flexibility in composition
 - Matchable time delays
 - More registration, calibration strategies
- Wide FOV is easier to support

Optical vs. video AR summary

- Both have proponents
- Video is more popular today?
 - Likely because lack of available optical products
- Depends on application?
 - Manufacturing: optical is cheaper
 - Medical: video for calibration strategies

Focus and contrast

Dieter Schmalstieg - An Introduction to Augmented Reality

3

• Focus

- Need to measure eye accommodation?
- Autofocus video camera?

Contrast

- Desirable to match brightness
- Real world has large dynamic range!
- More difficult with optical?

Dieter Schmalstieg - An Introduction to Augmented Reality

Portability

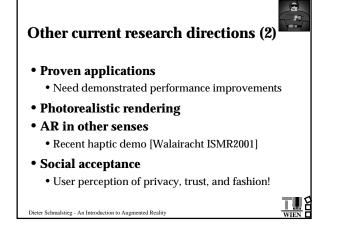
- VE: User stays in one place
- AR: User moves to task location
 - Want to use in factories, outdoors, etc.
 - Less controlled environments
 - Very demanding of the technology

Is AR easier/harder than VR?

- Rendering: easier
- Display (resolution, FOV, color): easier
- Tracking and sensing: harder
 - Greater bandwidth requirements (video, MRI data, range data, etc.)
 - Support occlusion, general environmental knowledge
 - A big problem for registration!

Dieter Schmalstieg - An Introduction to Augmented Reality

G


Upcoming...

- Tracking for Augmented Reality
- Augmented Reality Interaction
- Collaborative Augmented Reality
- Heterogeneous user interfaces
- Mobile Augmented Reality

Other current research directions (1)

• Ease of setup and use

- Avoid need for expert user
- Reduce calibration requirements
- Human factors and perceptual studies
 - Potential conflicts and optical illusions
 - Eye displacement in video see-through

Syllabus

• Overview

- Tracking for Augmented Reality
- Augmented Reality Interaction
- Collaborative Augmented Reality
- Heterogeneous user interfaces
- Mobile Augmented Reality

Dieter Schmalstieg - An Introduction to Augmented Reality

Dieter Schmalstieg - An Introduction to Augmented Reality

The importance of tracking

- Tracking is the basic enabling technology for Augmented Reality
- Without accurate tracking you can't generate the merged real-virtual environment
- Tracking is significantly more difficult in AR than in Virtual Environments
 - "Tracking is the stepchild that nobody talks about." - Henry Sowizral, Dec 1994 Scientific American

The Registration Problem

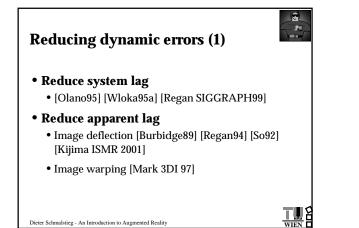
• Virtual and Real must stay properly aligned

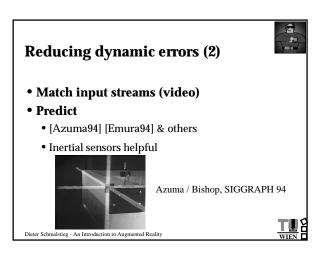
3

- If not:
 - Compromises illusion that the two coexist
 - Prevents acceptance of many serious applications
 - Do you want a surgeon cutting into you if the virtual cut-marks are misaligned?

Dieter Schmalstieg - An Introduction to Augmented Reality

Sources of registration errors


- Static errors
 - Optical distortions
 - Mechanical misalignments
 - Tracker errors
 - Incorrect viewing parameters
- Dynamic errors
 - System delays


Dieter Schmalstieg - An Introduction to Augmented Reality

Reducing static errors

- Distortion compensation
- Manual adjustments

- View-based or direct measurements • [Azuma94] [Caudell92] [Janin93] etc.
- Camera calibration (video)
 - [ARGOS94] [Bajura93] [Tuceryan95] etc.

Tracking technologies (as applied to AR)

5

• GPS

- Regular ~30 meters, Differential ~3 meters
- Carrier phase: centimeters but multipath and initialization problems
- Line of sight, jammable
- Inertial and dead reckoning
 - Sourceless but drifts
 - Cost and size restrictions

```
Dieter Schmalstieg - An Introduction to Augmented Reality
```

Tracking Technologies (2)

• Active sources

- Optical, magnetic, ultrasonic
- Requires structured, controlled environment
- Restricted range
- Magnetic vulnerable to distortions
- Ultrasonic: ambient temperature variations
- Optical is often expensive

Dieter Schmalstieg - An Introduction to Augmented Reality

Tracking Technologies (3)

3

8

• Scalable active trackers

Dieter Schmalstieg - An Introduction to Augmented Reality

• InterSense IS-900, 3rd Tech HiBall

• Passive optical

- Line of sight, may require landmarks to work well. Can be brittle.
- Computer vision is computationally-intensive

8

Tracking Technologies (4)

- Electromagnetic compass, tilt sensors
 - Passive and self-contained
 - Vulnerable to distortions
- Mechanical
- Can be accurate but tethers user
- Hybrid trackers
 - Combines approaches to cover weaknesses
- · Yields the best results Dieter Schmalstieg - An Introduction to Augmented Reality

Wrap-up

- Tracking is a key problem to AR
- Registration error

Dieter Schmalstieg - An Introduction to Augmented Reality

- Measures against static error
- Measures against dynamic error
- AR typically requires multiple tracking technologies

Syllabus

3

- Overview
- Tracking for Augmented Reality
- Augmented Reality Interaction
- Collaborative Augmented Reality
- Heterogeneous user interfaces
- Mobile Augmented Reality

AR Interaction: Why it is Important?

Dieter Schmalstieg - An Introduction to Augmented Reality

Designing AR system = interface design

- *Interface output*: HMDs, tracking, registration, etc.
- Interface input : optical trackers, interaction techniques...

Objective is a high quality of user experience

- Augmentation is a tool not a final goal
- Appropriateness to tasks and applications
- Ease of use & learning of interface
- Performance and satisfaction

```
Dieter Schmalstieg - An Introduction to Augmented Reality
```


AR browsers: Virtual information in real context

Information is registered to real-world context

• Hand held AR displays

Applications

- Video-see-through (Rekimoto, 1997) or non-see through
- (Fitzmaurice, et al. 1993) • Magnetic trackers or computer vision based Interaction

• Manipulation of a window into information space

 Context-aware information displays
Dieter Schmalstieg - An Introduction to Augmented Reality

3

WIEN

.

Rekimoto, et al. 1997

AR Info Browsers: Pros and Cons

Important class of AR interfaces

- Wearable computers
- AR simulation, training

Limited interactivity

- Modification of virtual content is difficult
- Virtual content authoring is difficult

Dieter Schmalstieg - An Introduction to Augmented Reality

Rekimoto, et al. 1997

3D AR Interfaces

- Virtual objects displayed in 3D physical space and can be freely manipulated
 - See-through HMDs and 6DOF head-tracking are required
 - 6DOF magnetic, ultrasonic, etc. hand trackers for input

Interaction

- Viewpoint controlTraditional 3D user interface
- interaction: manipulation, selection, adding, removing, etc. Dieter Schmalstieg - An Introduction to Augmented Reality

Kiyokawa, et al. 2000

3D AR Interfaces: Pros and Cons

Important class of AR interfaces

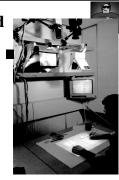
Entertainment, design, training

Advantages

- User can interact with 3D virtual
- object everywhere in spaceNatural, familiar interaction

Disadvantages

- Usually no tactile feedback
- HMDs are often required
- Interaction seams: user has to use different devices for virtual and physical objects
 Dieter Schmaksieg - An Introduction to Augmented Reality



Tangible interfaces and augmented surfaces

Basic principles

- Virtual objects are projected on a surface
 - back projection
 overhead projection
- Physical objects are used as controls for virtual objects
 - Tracked on the surface
 Virtual objects are registered to the physical objects
 - to the physical objects

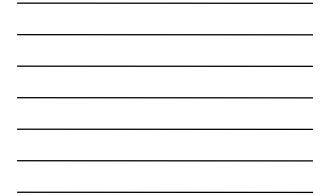
 Physical embodiment
- Collaborative
- Dieter Schmalstieg An Introduction to Augmented Reality

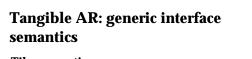
Digital Desk. 1993

Tangible Interfaces and Augmented Surfaces: Pros and Cons

Advantages

 The same device is used both for interacting with virtual and physical objects: human hand
 No need for special purpose input devices


• Disadvantages


Interaction is limited only to the 2D surface
 3D interaction and manipulation is difficult

```
Dieter Schmalstieg - An Introduction to Augmented Reality
```


	3D AR	Augmented surfaces
Spatial seams	No interaction is everywhere	Yes interaction is only on 2D surfaces
Interaction seams	Yes separate devices for physical and virtual	No same devices for physical and virtua

Tiles semantics

- data tiles operation tiles
- menu
- clipboard trashcan

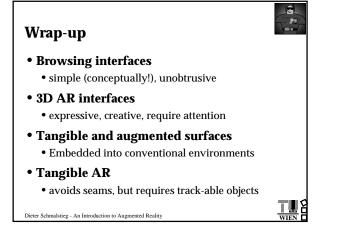
3

G

- help Operation on tiles
 - proximity
 - spatial arrangements
- space-multiplexed Dieter Schmalstieg - An Introduction to Augmented Reality

Tangible AR: Pros and Cons

Advantages


- Seamless interaction with both virtual and physical tools
- No need for special purpose input devices
- 3D presentation and manipulation of virtual objects

Disadvantages

• Required HMD

```
Dieter Schmalstieg - An Introduction to Augmented Reality
```


Syllabus

- Overview
- Tracking for Augmented Reality
- Augmented Reality Interaction
- Collaborative Augmented Reality
- Heterogeneous user interfaces
- Mobile Augmented Reality

Dieter Schmalstieg - An Introduction to Augmented Reality

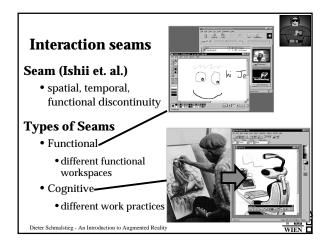
Today's Collaboration Technology

Video Conferencing

- lack of spatial cues
- limited participants
- 2D collaboration

Collaborative VEs

- separation from real world
- reduced conversational cues


Assumes remote collaboration!

Dieter Schmalstieg - An Introduction to Augmented Reality

G

22

Seams in collaboration

Functional Seams:

- Mediated differs from F-to-F Conversation
 - Loss of Gaze InformationDegradation of Non-Verbal Cues

Cognitive Seams:

- Learning Curve Effects
- User Frustration

Dieter Schmalstieg - An Introduction to Augmented Reality

Collaborative AR Systems Face to Face Collaboration • Studierstube • Shared Space

Studierstube (Schmalstieg et. al.)

- "Studierstube" = "study room"
- collaborative AR
- virtual objects, natural communication

Dieter Schmalstieg - An Introduction to Augmented Reality

2

- independent views of the data • POV, layers, annotations
- new forms of 3D interaction • Pen, PIP, tangible input devices

8

8

vide

Studierstube Features

Seamless Interaction Natural Communication

Attributes:

Augmentation

- Independence
- Individuality

Merges Task and Communication Space

Dieter Schmalstieg - An Introduction to Augmented Reality

Shared Space (Siggraph 99)

Goal

create compelling collaborative AR interface usable
 by novices

Exhibit content

physical objects
 5x7" cards

- matching card game
- face to face collaboration

Related Work

TransVision (Rekimoto) AR² Hockey (MRSL) RV Border Guards (MRSL) Collaborative Web Space (Billinghurst)

3

3 4

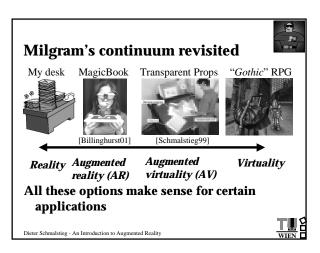
Dieter Schmalstieg - An Introduction to Augmented Reality

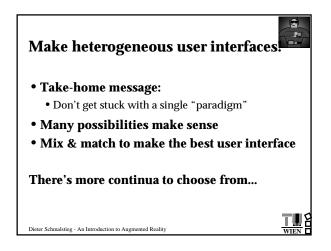
Wrap-up

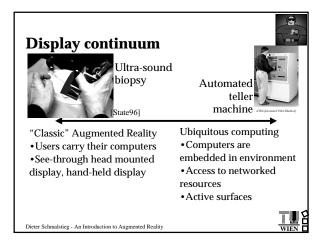
Face to face collaboration

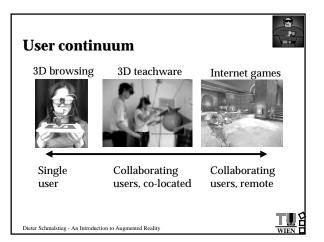
Dieter Schmalstieg - An Introduction to Augmented Reality

- \bullet Studies show AR preferred over immersive VR
- AR facilitates seamless/natural communication

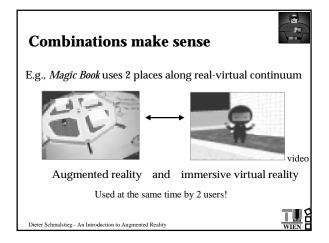

Syllabus

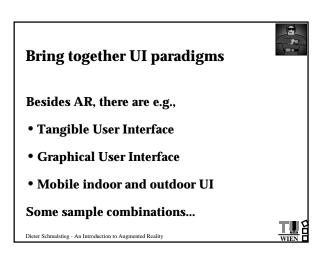

- Overview
- Tracking for Augmented Reality
- Augmented Reality Interaction
- Collaborative Augmented Reality
- Heterogeneous user interfaces
- Mobile Augmented Reality

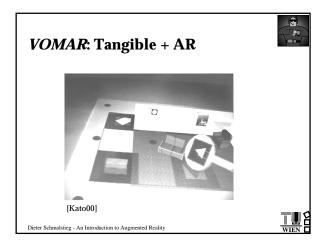



Dieter Schmalstieg - An Introduction to Augmented Reality

WIEN



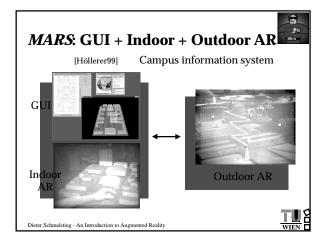




Personal Interaction Panel: AR+GU

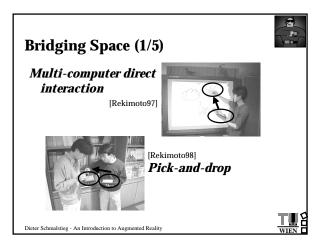
Properites:

- Pen and pad props
- Two-handed interaction
- Tactile feedback
- General and versatile
- Natural embedding of 2D in 3D
- Simple, cheap hardware



Multiple simultaneous paradigms

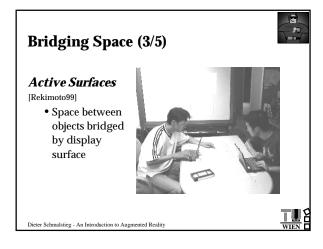
- Overcome boundaries between UI
- Bridging Space


Dieter Schmalstieg - An Introduction to Augmented Reality

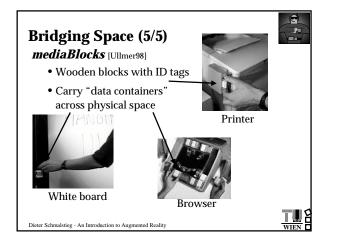
G

5

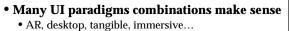
Studierstube [Schmalstieg00] Mix AR with projections



Bridging Space (2/5)


EMMIE [Butz99]

- Shared virtual "ether" metaphor
- Incorporate existing standard applications



Wrap-up

. .,

3

- Choose from several UI dimensions • Real⇔virtual, # of displays, users, applications...
- Build interesting user interfaces • Space bridging metaphor
 - Use most appropriate UI for any task
 - Don't think in categories, be creative!

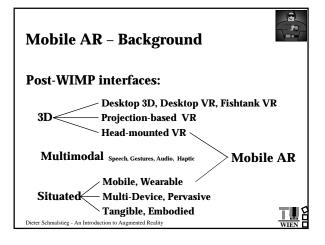
Dieter Schmalstieg - An Introduction to Augmented Reality

Syllabus

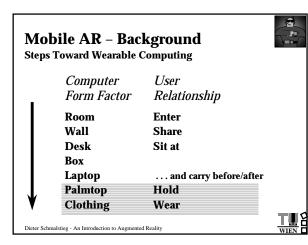
- Overview
- Tracking for Augmented Reality
- Augmented Reality Interaction
- Collaborative Augmented Reality
- Heterogeneous user interfaces
- Mobile Augmented Reality

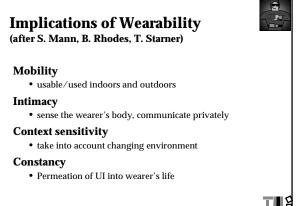
Dieter Schmalstieg - An Introduction to Augmented Reality

Mobile AR – Motivation


Mobile, wearable computing opens up new

possibilities


location-aware/situated computing


Now, the interface is truly everywhere

• AR is a powerful UI for this type of computing

What is Mobile AR?

Ways of augmenting a mobile user's environment

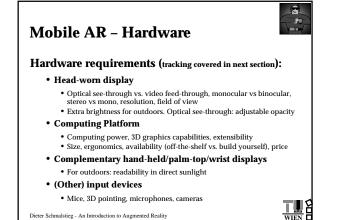
- wearable display, no tracking whatsoever
- body-stabilized wearable display (orientation tracking only)
- location-dependent audio augmentation (with or without spatialized audio)
- location-dependent screen-stabilized augmentation (possibly monocular)
- location-dependent body-stabilized augmentation (on a projection cylinder/sphere surrounding the user)
- stereo head-tracked, position tracked, AR with full overlay registration
 Dieter Schmalslieg An Introduction to Augmented Reality

Mobile AR – Challenges (1/2)

Mobile AR is difficult

- "Basic" wearable computing is already a technical challenge. Mobile AR adds a lot of extra complexity: orientation & longrange position tracking, possibly 3D graphics...
- Ruggedness required ("wear and tear!" ©)
- Outdoor AR is a particular challenge (wide range of operating conditions, little control over environment).

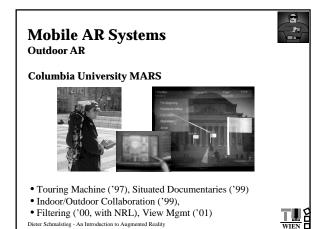
Dieter Schmalstieg - An Introduction to Augmented Reality

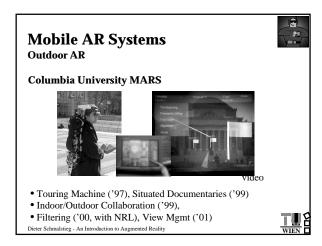

Mobile AR – Challenges (2/2)

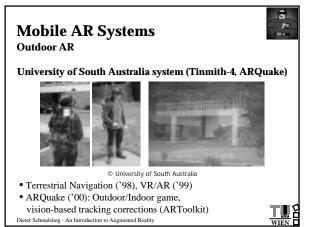
Limited Resources

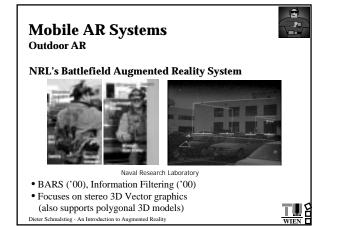
- · A wearable platform has limited computation power
- Size, weight, and power restrictions:
 - Military backpacks can weigh about 60 pounds (27 kg), military helmets 4-5 pounds (~2kg)
 - For a system to *appeal* to users, the weight has to be *drastically* lower and the ergonomics have to be right.
 - Batteries, batteries, batteries (esp. for 3D graphics)

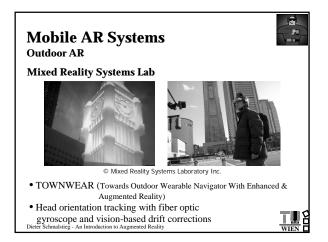
Dieter Schmalstieg - An Introduction to Augmented Reality


Mobile AR Systems Outdoor AR




Existing Outdoor Systems


• focus on tracking:


- HRL, Rockwell, USC, Mixed Reality Systems Lab, ... • focus on systems/UI:
 - Columbia University, University of South Australia, Naval Research Lab, Mixed Reality Systems Lab
 - Papers/Posters at ISAR and ISMR symposia

